Derivation of sky view factors from LIDAR data
نویسندگان
چکیده
The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.
منابع مشابه
Estimation of Continuous Urban Sky View Factor from Landsat Data Using Shadow Detection
Sky View Factor (SVF, a dimensionless value between 0 and 1 representing obstructed and unobstructed sky, respectively) has an important influence on urban energy balance, and is a key contributor to the Urban Heat Island (UHI) effect experienced by heavily built up regions. Continuous urban SVF maps used in modeling the spatial distribution of UHI can be derived analytically using Lidar data; ...
متن کاملEvaluation of Cirrus Cloud Detection Accuracy of GOSAT/CAI and Landsat-8 with Laser Radar: Lidar and Confirmation with Calipso Data
Cirrus cloud detection accuracy of GOSAT/CAI and Landsat-8 is evaluated with a ground based Laser Radar: Lidar data and sky view camera data. Also, the evaluation results are confirmed with Calipso data together with a topographic representation of vertical profile of cloud structure. Furthermore, origin of cirrus clouds is estimated with forward trajectory analysis. The results show that GOSAT...
متن کاملDimensionless parameterization of lidar for laser remote sensing of the atmosphere and its application to systems with SiPM and PMT detectors.
In this paper, we show a renewed approach to the generalized methodology for atmospheric lidar assessment, which uses the dimensionless parameterization as a core component. It is based on a series of our previous works where the problem of universal parameterization over many lidar technologies were described and analyzed from different points of view. The modernized dimensionless parameteriza...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملComparative Study on Cloud Parameter Estimation Among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI with Laser Radar: Lidar as Truth Data
A comparative study on cloud parameter estimation among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI is carried out using Laser Radar: Lidar as a truth data. Optical depth, size distribution, as well as cirrus type of clouds are cloud parameters. In particular, cirrus cloud detection is tough issue. 1.38 μm channel is required for its detection. Although MODIS and Landsat-8/OLI have such ...
متن کامل